The Construction of Jacobi and Periodic Jacobi Matrices With Prescribed Spectra
نویسنده
چکیده
The spectral properties of Jacobi and periodic Jacobi matrices are analyzed and algorithms for the construction of Jacobi and periodic Jacobi matrices with prescribed spectra are presented. Numerical evidence demonstrates that these algorithms are of practical utility. These algorithms have been used in studies of the periodic Toda lattice, and might also be used in studies of inverse eigenvalue problems for Sturm-Liouville equations and Hill's equation.
منابع مشابه
Jacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations
This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product. The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations which appear in various fields of science such as physics and engineering. The Operational matr...
متن کاملGauss Quadratures and Jacobi Matrices for Weight Functions Not of One Sign
Construction of Gauss quadratures with prescribed knots via Jacobi matrices is extended to the case where not all orthogonal polynomials exist due to the weight function changing sign. An algorithm is described and is demonstrated by calculating the knots of Kronrod schemes and other Gauss quadratures with prescribed knots.
متن کاملComparative study on solving fractional differential equations via shifted Jacobi collocation method
In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...
متن کاملOn Construction of a Complex Finite Jacobi Matrix from Two Spectra
This paper concerns with the inverse spectral problem for two spectra of finite order complex Jacobi matrices (tri-diagonal symmetric matrices with complex entries). The problem is to reconstruct the matrix using two sets of eigenvalues, one for the original Jacobi matrix and one for the matrix obtained by replacing the last diagonal element of the Jacobi matrix by some other number. The unique...
متن کاملEla on Construction of a Complex Finite Jacobi Matrix from Two Spectra
This paper concerns with the inverse spectral problem for two spectra of finite order complex Jacobi matrices (tri-diagonal symmetric matrices with complex entries). The problem is to reconstruct the matrix using two sets of eigenvalues, one for the original Jacobi matrix and one for the matrix obtained by replacing the last diagonal element of the Jacobi matrix by some other number. The unique...
متن کامل